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Abstract: For each q of the form 4k , we determine all a ∈ Fq for which X +Xq +X2q−1 + aXq2−q+1 permutes Fq2 .
We also construct a class of permutation trinomials over Fq2 in case q ≡ 1 (mod 3) .
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1. Introduction
For any prime power q , a polynomial f(X) ∈ Fq[X] is called a permutation polynomial if the function α 7→ f(α)

induces a permutation of Fq . Such polynomials have been intensively studied due to both their applications
and their intrinsic interest. In particular, many authors have studied permutation polynomials with few terms.

The main result of the recent paper [2] is as follows, in which Trm1 is the trace function from F2m to F2 .

Theorem 1.1 (Theorem 3.2 of [2]) Let q = 2m where m is an even integer with m > 2 . If a, b ∈ Fq satisfy

a+1 /∈ {0, b} , Trm1 ( 1
1+a ) = 0 , and Trm1 (1+ b

(1+a+b)2 ) = 0 then f(X) := X+Xq +X2q−1+aXq2−q+1 permutes
Fq2 .

In this note, we show that Theorem 1.1 is false, in the following strong sense:

Theorem 1.2 Let q = 2m where m > 0 is even, and pick a ∈ Fq . Then f(X) := X+Xq+X2q−1+aXq2−q+1

permutes Fq2 if and only if a = 0 .

In light of Theorem 1.2, it is easy to exhibit explicit counterexamples to Theorem 1.1, which may be
verified independently of Theorem 1.2. For instance, one counterexample is m = 4 , a ∈ F4 \ F2 , and b = 0 .

This paper is organized as follows. After presenting some known results in the next section, we prove
Theorem 1.2 in Section 3, after which we explain a mistake in the proof of [2, Thm. 3.2]. Then in Section 4, we
present a class of permutation trinomials which generalizes [2, Thm. 3.1].

2. Background results
In this section, we present the known results which are used in our proof of Theorem 1.2. They rely on the
following notation, which we use throughout this paper.
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Notation 2.1 If q is a prime power then we write µq+1 for the set of all (q+1)-th roots of unity in Fq2 , and
for any field K we define P1(K) := K ∪ {∞} and let K be an algebraic closure of K .

We begin with the following special case of [3, Lemma 2.1]:

Lemma 2.2 Write f(X) := XrB(Xq−1) where q is a prime power, r is a positive integer, and B(X) ∈ Fq2 [X] .
Then f(X) permutes Fq2 if and only if gcd(r, q − 1) = 1 and g0(X) := XrB(X)q−1 permutes µq+1 .

The next lemma encodes a procedure introduced in [4]:

Lemma 2.3 For r > 0 and B(X) ∈ Fq[X] , the polynomial g0(X) := XrB(X)q−1 permutes µq+1 if and only
if B(X) has no roots in µq+1 and g(X) := XrB(1/X)/B(X) permutes µq+1 .

Proof Plainly, if B(X) has roots in µq+1 , then g0(X) does not permute µq+1 . Henceforth, suppose that
B(X) has no roots in µq+1 . Then for γ ∈ µq+1 we have

B(γ)q−1 =
B(γ)q

B(γ)
=

B(γq)

B(γ)
=

B(γ−1)

B(γ)
,

so that g0(γ) = g(γ) . The result follows.

Definition 2.4 For any field K and any nonzero h(X) ∈ K(X) , by the numerator and denominator of h(X) ,
we mean the unique coprime N,D ∈ K[X] such that D(X) is monic and h(X) = N(X)/D(X) , and the degree
of h(X) ∈ K(X) is max(deg(N), deg(D)) .

The following lemma is well-known and easy. It can be proved directly from the definitions, or as an
immediate consequence of the first assertion in [1, Lemma 2.2].

Lemma 2.5 For any field K , any nonconstant h(X) ∈ K(X) , and any degree-one ρ, η ∈ K(X) , the rational
functions h(X) and ρ(X) ◦ h(X) ◦ η(X) have the same degree as one another.

The following result is a special case of [4, Lemma 3.1].

Lemma 2.6 For any prime power q , and any c ∈ Fq2 \ Fq , the degree-one rational function ρ(X) :=

(cX − cq)/(X − 1) induces a bijection from µq+1 to P1(Fq) .

The following result is well-known; for instance, cf. [1, Cor. 2.8]:

Lemma 2.7 For any field K and any degree-one ρ(X) ∈ K(X) , there is a unique degree-one ρ−1(X) ∈ K(X)

such that ρ−1 ◦ ρ = X = ρ ◦ ρ−1 . Explicitly, if ρ(X) = (aX + b)/(cX + d) then ρ−1(X) = (dX − b)/(−cX + a) .

We will use the geometric description of all degree-three permutation rational functions over Fq from [1,
Thm. 1.3], for which two very short proofs are given in [1]. The following is a consequence of that result:

Lemma 2.8 Let q be a power of 2 , and let h(X) ∈ Fq(X) have degree 3 . If h(X) permutes P1(Fq) then there
exist degree-one σ, τ ∈ Fq2(X) for which h(X) = σ ◦X3 ◦ τ .
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3. Proof of Theorem 1.2
In this section, we prove Theorem 1.2. Throughout this section, we write q := 2m where m > 0 is even, and
f(X) := X +Xq +X2q−1 + aXq2−q+1 for some a ∈ Fq . We also use Notation 2.1 without further mention.

We may assume that a 6= 1 , since if a = 1 then f(1) = 0 = f(0) so that f(X) does not permute Fq2 .
Note that

f(X) ≡ Xq2 +Xq2+q−1 +Xq2+2q−2 + aXq2−q+1 (mod Xq2 −X),

so that f(X) permutes Fq2 if and only if

f1(X) := Xq2 +Xq2+q−1 +Xq2+2q−2 + aXq2−q+1

does. Here f1(X) = Xq2−q+1B(Xq−1) where B(X) := X3 + X2 + X + a . By Lemmas 2.2 and 2.3, f1(X)

permutes Fq2 if and only if B(X) has no roots in µq+1 and Xq2−q+1B(1/X)/B(X) permutes µq+1 . Since
q2 − q + 1 ≡ 3 (mod q + 1) , it follows that f(X) permutes Fq2 if and only if B(X) has no roots in µq+1 and
g(X) := X3B(1/X)/B(X) permutes µq+1 .

First, suppose a = 0 , so that B(X) = X3 +X2 +X and

g(X) =
X2 +X + 1

X3 +X2 +X
=

1

X
.

Then the roots of B(X) are 0 and the primitive cube roots of unity. Since q = 2m with m even, we have q ≡ 1

(mod 3) so that q + 1 ≡ 2 (mod 3) , whence B(X) has no roots in µq+1 . Since g(X) = 1/X permutes µq+1 ,
it follows that f(X) permutes Fq2 in this case.

Henceforth suppose, for the sake of obtaining a contradiction, that a 6= 0 and f(X) permutes Fq2 .
Then g(X) permutes µq+1 . We first show that deg(g) = 3 . Write N(X) := X3B(1/X) , so that N(X) =

aX3 +X2 +X +1 and g(X) = N(X)/B(X) . Then N(X)+B(X) = (a+1)(X3 +1) , so since a 6= 1 it follows
that any common root of N(X) and B(X) would be a root of X3 + 1 . However, N(1) = a+ 1 6= 0 and each
ω ∈ F4 \F2 satisfies N(ω) = a 6= 0 , so N(X) and B(X) have no common roots. Thus, gcd(N(X), B(X)) = 1 ,
which since deg(N) = deg(B) = 3 implies that deg(g) = 3 .

Next, we show that g(X) is the composition of X3 with degree-one rational functions over Fq2 . To this

end, first pick s ∈ Fq satisfying sq+s = 1 . Then s /∈ Fq , and since sq+s = 1 = 1q = sq
2

+sq , we conclude that

sq
2

= s , so that s ∈ Fq2 . Write ρ(X) := (sX + sq)/(X + 1) and ρ−1(X) := (X + sq)/(X + s) , so that ρ(X)

maps µq+1 bijectively onto P1(Fq) (by Lemma 2.6) and ρ−1(X) induces the inverse bijection (by Lemma 2.7).
Since g(X) permutes µq+1 , we see that h(X) := ρ(X)◦g(X)◦ρ−1(X) permutes P1(Fq) . The rational function
h(X) is in Fq2(X) ; we now show that in fact it is in Fq(X) . Writing t := s2 + s , a routine computation yields

h(X) := ρ ◦ g ◦ ρ−1 =
X3 + tX + t+ 1

a+1

X2 +X + t+ 1
.

Note that tq = (s + 1)2 + (s + 1) = s2 + s = t so that t ∈ Fq , whence h(X) ∈ Fq(X) . Thus, h(X) is a
rational function in Fq(X) which permutes P1(Fq) , and deg(h) = 3 by Lemma 2.5, so by Lemma 2.8, we see

3



DING and ZIEVE/Turk J Math

that h(X) = σ ◦X3 ◦ τ for some degree-one σ, τ ∈ Fq2(X) . Thus,

g(X) = ρ−1 ◦ σ ◦X3 ◦ τ ◦ ρ

can be written as g(X) = σ̂ ◦X3 ◦ ρ̂ where σ̂ := ρ−1 ◦ σ and τ̂ := τ ◦ ρ are degree-one rational functions in
Fq2(X) .

Finally, we obtain a contradiction by examining the numbers of g -preimages in P1(Fq) of certain elements
of P1(Fq) . Note that each element of P1(Fq) has either 1 or 3 preimages under X3 . Since σ̂ and τ̂ induce
bijections on P1(Fq) , it follows that each element of P1(Fq) has either 1 or 3 preimages under g(X) = σ̂◦X3◦τ̂ .
Let β ∈ Fq be a root of X2 + (a+ 1)X + 1 , so that β /∈ F2 since a 6= 1 . Then

g(X) + β =
N(X) + βB(X)

B(X)

=
(a+ β)X3 + (1 + β)(X2 +X) + 1 + βa

B(X)

= (a+ β)
(X2 + β)(X + β)

B(X)
,

where it is easy to check that the numerators of the last two rational functions have the same terms of degree
Xi for i ∈ {1, 2, 3} , and then one can conclude that they also have the same constant term since the constant
term of (a+ β)(X2 + β)(X + β) is β times the coefficient of X , and hence is β(1 + β) = 1 + βa . Since g(X)

is nonconstant, we have deg(g(X) + β) = deg(g) = 3 , so that B(X) and (X2 + β)(X + β) are coprime. Since
β 6= a = g(∞) , it follows that the only g -preimages of β in P1(Fq) are β and

√
β . Since β /∈ F2 , we conclude

that β has exactly two g -preimages in P1(Fq) , which contradicts what we showed above. This contradiction
implies that if a 6= 0 then f(X) does not permute Fq2 , which concludes the proof of Theorem 1.2.

Remark 3.1 One mistake in the proof of [2, Thm. 3.2] occurs in the last displayed equation on page 927 of
[2], where the author claims that

Trm1

(
1 +

µ

1 + a2 + aµ+ µ
+

(1 + a)µ2

(1 + a2 + aµ+ µ)2

)
= Trm1

(
1 +

µ

(1 + a+ µ)2

)
.

This equality is false in general, and no justification for this equality is given in the paper [2].

4. Another class of permutation polynomials

The second theorem in [2] is as follows:

Theorem 4.1 (Theorem 3.1 of [2]) If q = 2m for some positive integer m then f(X) := X + Xq3−q+1 +

Xq4−q3+q permutes Fq4 .

In this section, we construct some classes of permutation polynomials which include Theorem 4.1 as a
very special case. Throughout this section, we use Notation 2.1.

We begin with the following general result.
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Theorem 4.2 (Theorem 5.1 of [4]) Let Q be a prime power, let r and d be positive integers, and let β be a

(Q+1)-th root of unity in FQ2 . Let B(X) :=
∑d

i=0 aiX
i where a0 6= 0 and, for 0 ≤ i ≤ d/2 , we have ai ∈ FQ2

and ad−i = (βai)
Q . Then f(X) := XrB(XQ−1) permutes FQ2 if and only if all of the following hold:

(4.2.1) gcd(r,Q− 1) = 1 ;

(4.2.2) gcd(r − d,Q+ 1) = 1 ;

(4.2.3) B(X) has no roots in µQ+1 .

In order to produce explicit classes of permutation polynomials using Theorem 4.2, one must exhibit
explicit situations in which (4.2.3) holds. Here is one such situation:

Corollary 4.3 Let Q be a power of a prime p , and let r, k, v be positive integers with k > 1 . Let B(X) :=∑k−1
i=0 Xiv . Then f(X) := XrB(XQ−1) permutes FQ2 if and only if all of the following hold:

(4.3.1) gcd(r,Q− 1) = 1 ;

(4.3.2) gcd(r − kv + v,Q+ 1) = 1 ;

(4.3.3) gcd(p Q+1
gcd(Q+1,v) , k) = 1 .

Proof Writing d := (k − 1)v , we have B(X) =
∑d

i=0 aiX
i where ai = 1 when v | d and ai = 0 otherwise.

Thus, a0 6= 0 , each ai is in FQ , and ad−i = ai for each i (since v | d implies that v | i if and only if v | (d− i)).
Thus, for each i , we have ad−i = (βai)

Q with β := 1 . Hence, Q , r , d , β , and B(X) satisfy the hypotheses
of Theorem 4.2, so by Theorem 4.2, we see that f(X) permutes FQ2 if and only if conditions (4.2.1)–(4.2.3)
hold. Plainly, (4.2.1) and (4.3.1) are identical, and since d = kv − v , we see that (4.3.2) is a reformulation of
(4.2.2). Next, note that B(X) = (Xkv − 1)/(Xv − 1) . If p divides k , then Xkv − 1 is divisible by Xpv − 1 ,
which equals (Xv − 1)p , so that B(X) is a polynomial times (Xv − 1)p−1 , and thus, B(1) = 0 . Hence, if p | k ,
then (4.2.3) does not hold, and plainly, in this case, (4.3.3) does not hold either. Finally, assume that p ∤ k .
Then the roots of (Xk − 1)/(X − 1) are the nontrivial k -th roots of unity in Fp , so the roots of B(X) are the

elements of F∗
p whose order divides kv but does not divide v . There are no such elements in µQ+1 if and only

if gcd(kv,Q+ 1) = gcd(v,Q+ 1) , or equivalently gcd(k, Q+1
gcd(Q+1,v) ) = 1 . Thus, (4.2.3) is equivalent to (4.3.3),

which concludes the proof of Corollary 4.3.

In the special case where k = 3 and Q ≡ 1 (mod 3) , Corollary 4.3 becomes the following.

Corollary 4.4 Let Q be a prime power with Q ≡ 1 (mod 3) , and let r and v be positive integers. Let B(X) :=

1+Xv +X2v . Then f(X) := XrB(XQ−1) permutes FQ2 if and only if gcd(r,Q−1) = 1 = gcd(r−2v,Q+1) .

There are many choices of r and v which satisfy the gcd conditions in Corollary 4.4. For instance, we
obtain the following result from the choices v =

√
Q and r = v4 − v3 + v .

Corollary 4.5 Let q be a power of a prime p . Then f(X) := X +Xq3−q+1 +Xq4−q3+q permutes Fq4 if and
only if p 6= 3 .
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Proof First, note that if p = 3 , then f(X) does not permute Fq4 since f(1) = 0 = f(0) . Henceforth, assume
p 6= 3 , and write v := q , Q := q2 , r := q4 − q3 + q , and B(X) := 1 +Xv +X2v . Then Q is a prime power
with Q ≡ 1 (mod 3) , and r and v are positive integers. Moreover, since r+v(Q−1) = v4 = r−2v+v(Q+1) ,
we have gcd(r,Q − 1) = gcd(v4, v2 − 1) = 1 and likewise gcd(r − 2v,Q + 1) = 1 . Thus, Corollary 4.4 implies

that f̂(X) := XrB(XQ−1) permutes Fq4 . We have

f̂(X) = Xq4−q3+q +Xq4−q3+q+q(q2−1) +Xq4−q3+q+2q(q2−1)

= Xq4−q3+q +Xq4 +Xq4+q3−q,

so that f̂(X) induces the same function on Fq4 as does f(X) . Thus, f(X) permutes Fq4 , which concludes the
proof.

Theorem 4.1 is the special case of Corollary 4.5 in which p = 2 . Thus, Corollary 4.5 is a vast generalization
of Theorem 4.1, while Corollary 4.4 is much more general than Corollary 4.5, and Corollary 4.3 is enormously
more general than Corollary 4.4, and finally Corollary 4.3 is one very special case of Theorem 4.2.

A different type of generalization of the permutation polynomials in Theorem 4.1 is provided by the
following result.

Theorem 4.6 (Proposition 1.1 of [3]) Let Q be a power of a prime p , and let r, k, v, t be positive integers.
Write s := gcd(v,Q−1) , d := (Q−1)/s , and e := v/s , and let S be the set of d-th roots of unity in FQ which

do not equal 1 . Then Xr(
∑k−1

i=0 Xiv)t permutes FQ if and only if all of the following hold:

(4.6.1) gcd(r, s) = gcd(d, k) = 1 ;

(4.6.2) gcd(d, 2r + vt(k − 1)) ≤ 2 ;

(4.6.3) kst ≡ (−1)(d+1)(r+1) (mod p) ;

(4.6.4) g(X) := Xr
(
1−Xke

1−Xe

)st is injective on S ;

(4.6.5) (−1)(d+1)(r+1) /∈ g(S) .

Proof that Theorem 4.6 implies Corollary 4.5 Let q be a power of a prime p , and write f(X) :=

X + Xq3−q+1 + Xq4−q3+q . Plainly, if p = 3 , then f(1) = 0 = f(0) , so that f(X) does not permute Fq4 .
Henceforth, suppose p 6= 3 , and write Q := q4 , r := q4 − q3 + q , k := 3 , v := q3 − q , and t := 1 . Define
s, d, e, S as in Theorem 4.6, so that s = q2−1 , d = q2+1 , e = q , and S is the set of nontrivial (q2+1) -th roots

of unity in F∗
q4 . By Theorem 4.6, f̂(X) := Xr(

∑k−1
i=0 Xiv)t permutes FQ if and only if (4.6.1)–(4.6.5) hold.

We now verify each of these conditions. Since r+ qs = q4 , we have gcd(r, s) = gcd(q4, s) = gcd(q4, q2 − 1) = 1 .
Since −1 is a nonsquare in F∗

3 , we have gcd(d, k) = gcd(q2 + 1, 3) = 1 , which implies (4.6.1). We compute
gcd(d, 2r + vt(k − 1)) = gcd(q2 + 1, 2q4) ≤ 2 , so that (4.6.2) holds. Condition (4.6.3) holds because 3p−1 ≡ 1

(mod p) and (−1)r+1 = 1 . We have g(X) = Xr(1 + Xq + X2q)q
2−1 . Since r ≡ 2q + 1 (mod q2 + 1) and
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3 ∤ (q2 + 1) , each γ ∈ S satisfies 1 + γq + γ2q 6= 0 , and thus,

g(γ) = γ2q+1(1 + γq + γ2q)q
2−1

= γ2q+1 (1 + γq + γ2q)q
2

1 + γq + γ2q

= γ2q+1 1 + γ−q + γ−2q

1 + γq + γ2q

= γ.

Therefore, g(X) induces the identity function on S , so that (4.6.4) holds, and also (4.6.5) holds since 1 /∈

S = g(S) . We have verified (4.6.1)–(4.6.5), so that f̂(X) permutes Fq4 . Finally, we compute f̂(X) =

Xq4−q3+q + Xq4 + Xq4+q3−q , so that f̂(X) induces the same function on Fq4 as does f(X) . It follows that
f(X) permutes Fq4 , which yields Corollary 4.5.
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